Salamander evolution across a latitudinal cline in gape-limited predation risk

نویسندگان

  • Mark C. Urban
  • M. C. Urban
چکیده

General predictions of community dynamics require that insights derived from local habitats can be scaled up to explain phenomena across geographic scales. Across these larger spatial extents, adaptation can play an increasing role in determining the outcome of species interactions. If local adaptation is common, then our ability to generalize measures of species interaction strength across communities will be limited without an additional understanding of the genetic variation underlying interaction traits. In the context of predator prey interactions, prey individuals commonly are expected to reduce risky foraging behaviors and subsequent growth under predation threat. However, rapid growth into a large body size can defend against gape-limited predators, creating a tradeoff between increased predation risk due to elevated foraging activity and decreased predation risk due to large size. Here I combine field observations, natural selection experiments, and common garden assays to understand potential adaptations of spotted salamander Ambystoma maculatum larvae to gape-limited and gape-unconstrained predators. Field observations and natural selection trials suggested antagonistic selection on prey body size among ponds dominated by gape-limited predator salamanders A. opacum and gape-unconstrained beetle larvae Dytiscus. In common garden experiments, prey from sites with high gapelimited predation risk grew larger than those from other sites, suggesting the evolution of rapid growth into a prey size refuge. Larvae from all sites grew to a large size when exposed to the gape-limited N. viridescens predator’s kairomones. Hence, induced rapid growth into a size refuge may be an adaptive response to gape-limited predation risk. Results point to an important role for cross-community generalizations based on functional classifications of predators by their gape constraints and inter-site genetic variation in prey growth rates and behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evolution of foraging rate across local and geographic gradients in predation risk and competition.

Multiple theories predict the evolution of foraging rates in response to environmental variation in predation risk, intraspecific competition, time constraints, and temperature. We tested six hypotheses for the evolution of foraging rate in 24 spotted salamander (Ambystoma maculatum) populations from three latitudinally divergent sites using structural equation models derived from theory and ap...

متن کامل

Risky prey behavior evolves in risky habitats.

Longstanding theory in behavioral ecology predicts that prey should evolve decreased foraging rates under high predation threat. However, an alternative perspective suggests that growth into a size refuge from gape-limited predation and the future benefits of large size can outweigh the initial survival costs of intense foraging. Here, I evaluate the relative contributions of selection from a g...

متن کامل

The growth-predation risk trade-off under a growing gape-limited predation threat.

Growth is a critical ecological trait because it can determine population demography, evolution, and community interactions. Predation risk frequently induces decreased foraging and slow growth in prey. However, such strategies may not always be favored when prey can outgrow a predator's hunting ability. At the same time, a growing gape-limited predator broadens its hunting ability through time...

متن کامل

Strong selection barriers explain microgeographic adaptation in wild salamander populations.

Microgeographic adaptation occurs when populations evolve divergent fitness advantages across the spatial scales at which focal organisms regularly disperse. Although an increasing number of studies find evidence for microgeographic adaptation, the underlying causes often remain unknown. Adaptive divergence requires some combination of limited gene flow and strong divergent natural selection am...

متن کامل

Behavioural Adaptations of Mussels to Varying Levels of Food Availability and Predation Risk

Blue mussels Mytilus edulis (n 1⁄4 14) were studied in the laboratory using Hall sensor systems to record their gaping behaviour when exposed to varying food rations and levels of predation risk. Mussel response to increasing daily algal ration was to increase mean gape angle per day and was associated with copious pseudofaeces production at excessive initial algal concentrations, e.g. 250 cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008